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Abstract. Regular expression (RegEx) matching plays an important
role in various network, security and database applications. Deterministic
finite automata (DFA) is the preferred representation to achieve online
RegEx matching in backbone networks, because of its one single pass
over inputs for multiple RegExes and guaranteed performance of O(1)
memory bandwidth per symbol. However, DFA may occupy prohibitive
amounts of memory due to the explosive growth in its state size. In this
work, we propose Series DFA (SDFA) to address the problem. The main
idea is to cut a complex RegEx into several ordered and small RegExes
carefully, and then concatenate their compact DFAs in series to match.
Experimental results show that SDFA can achieve significant reduction
in memory size at the cost of limited number of memory bandwidth.

1 Introduction

Deep Packet Inspection (DPI), which searches for predefined signatures over the
content of packet payloads, is considered as a powerful and important method
in network and security applications. Recently regular expressions (RegExes)
are replacing exact strings as the de facto standard to specify signatures in
most open-source tools [9, 6] and commercial devices. The primary reason is
the expressive power, simplicity and flexibility of RegExes. Deterministic Finite
Automata (DFA) is an ideal representation for high-speed RegEx matching,
because multiple RegExes can be compiled into a composite DFA that performs
matching over inputs in a single pass with a guaranteed robust performance of
O(1) memory bandwidth per byte. However, the composite DFA constructed
for real-world RegEx sets may experience state explosion, as a result it usually
consumes prohibitive amounts of memory.

In this paper, we focus on state reduction by cutting complex RegExes into
well-designed and ordered RegEx fragments that can be compiled into com-
pact DFAs. To match equivalently as uncutted RegExes, we propose Series DFA
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(SDFA) that concatenates the compact DFAs with epsilon transitions in the
order of their appearance. We further introduce some optimizations to improve
the memory consumption and memory bandwidth of SDFA. Different from prior
work [1], SDFA works over RegExes directly to achieve the reduction of states,
which makes it being constructed easily and quickly even for large-scale RegEx
sets. We perform a systematic experimental study on real RegEx sets and our
synthetic RegEx set. The results show that SDFA achieves significant memory
reduction, and shows almost the same matching speed comparing with the com-
posite DFA.

2 Related Work

With the widespread use of RegExes in various applications, research interests
focus on designing data structures, algorithms and architectures to support fast
and memory-efficient RegEx matching. In this context, how to reduce the huge
memory consumption is the hotspot of related researches for those matching
solutions based on DFAs. In general, prior work can be classified into three
categories: DFA compression, partial determinization and history auxiliary.

DFA compression solutions try to achieve memory reduction by compressing
the transition table for a given DFA [5, 3, 8, 7]. They are based on the observation
of many common values in the table. However, the memory usage, which have
been reduced by 95% after compressing, are still very huge as the composite
DFA for real RegEx sets usually costs multiple terabytes. These solutions are
orthogonal to our work and can be used to compress the compact DFAs in SDFA.

Partial determinization solutions address the problem by constructing hybrid
automata [1] or multiple parallel DFAs [13, 10] at the cost of determinacy by
allowing multiple states active during the matching process. Our work improves
upon these solutions because our DFAs constructed for the cutting RegEx frag-
ments are compact enough, and are activated when necessary.

History auxiliary solutions introduce counters, queues and other data struc-
tures as auxiliary memory to avoid duplication of states by recording matching
history [4, 11]. However, the benefit of state reduction does not come for free.
They either experience an exponential growth in the size of auxiliary memory,
or require much time to update auxiliary memory after processing each symbol.

3 Technical Overview of Series DFA

3.1 State Complexity for RegExes

An analysis of state complexity for DFA of individual RegEx that does not have
OR relationship (|) is represented in [13]. Here we consider RegExes in the
combination of ^, one unconstrained repetition * and one constrained repetition
(three types: fixed repetition {j}, range repetition {j,i} and at-least repetition
{j,}) of wildcards, and the detail is shown in Table 1.
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Table 1. State complexity for individual RegEx with k characters

RegEx Feature Example State Complexity

without constrained repetitions of wildcards ^abcd, abcd O(k)
^ab.*cd, ab.*cd

with ^, one fixed or one at-least repetition ^ab.{j}cd O(k + j)
^ab.{j,}cd

with ^ and one range repetition ^ab.{j,i}cd O(k(i− j))

with only one fixed or one at-least repetition ab.{j}cd O(k + 2j)
ab.{j,}cd

with only one range repetition ab.{j,i}cd O(k(i− j) + 2i)

From the table, we can find that unconstrained repetitions do not cause state
explosion when individual RegEx is compiled into a DFA in isolation (case 1).
Constrained repetitions of wildcards lead to exponential growth in DFA state size
for individual RegEx not starting with ^ (case 4 and case 5). Because the DFA
needs to record the prefix part within each wildcard. The situation becomes
even worse when multiple RegExes with constrained repetitions are compiled
together into a composite DFA. Because there are more combinations of prefixes
and more wildcards in these RegExes.

By comparison, RegExes of the former three cases do not result in a large
DFA. Therefore, if we cut RegExes of the latter two cases into multiple RegEx
fragments of the former three cases, we can construct a compact DFA for each
fragment. In this paper, we investigate its feasibility to reduce DFA state size.

3.2 Main Idea of SDFA

In order to facilitate description, we call a RegEx as its fragments’ father, each
fragment as its son. For a given RegEx, the first (last) fragment is called its
eldestson (youngestson), correspondingly other fragments are non-eldestsons
(non-youngestsons). To match multiple RegExes together in a single pass, all
the eldestsons are compiled into a composite DFA, and each non-eldestson is
compiled into an individual DFA. SDFA organizes all the DFAs in series and
perform matching in the follow way: at the beginning only the initial state of
the composite DFA is active, all the individual DFAs are sleep; SDFA will add a
new instance of the initial state of one individual DFA when its preceding DFA
matches successfully, and delete an instance when it moves to the dead-state.

We use an example of two RegExes ba[^a]*bad.{2}cd and de[^e]{3} to
show how SDFA works in detail. It first locates all unconstrained and con-
strained repetitions in the two RegExes, and then cut them into five fragments:
ba, ^[^a]*bad, ^.{2}cd, de, ^[^e]{3} at these positions. Note that all the non-
eldestsons begin with ∧, because a fragment begins to match from position j+1
of input string only when its preceding fragment matches successfully at position
j. Fragments ba and de, which are the eldestsons of the two RegExes, are com-
piled into a composite DFA. Now we describe how to construct a SDFA with the
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Fig. 1. SDFA accepting ba[^a]*bad.{2}cd and de[^e]{3}. For each DFA, the state in
green (red) is its initial (accepting) state. Transitions to the initial states are omitted.
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Fig. 2. SDFA traversal with input badebababadeecd

four DFAs, as shown in Fig. 1. The initial state of the composite DFA (state 0)
is the initial state of the SDFA, and the accepting states of DFAs constructed for
the youngestsons (state 13 and 17) are the accepting state of the SDFA. For the
accepting states of the other DFAs, adding an epsilon (ε) transition that does
not consume any symbol to the initial state of the DFA constructed for its fol-
lowing brother. As shown in Fig. 1, the SDFA accepting ba[^a]*bad.{2}cd and
de[^e]{3} has 21 states, while the state-minimized DFA has 58 states (omitted
here for readability).

In Fig. 2, we show the matching process of the SDFA in Fig. 1 over input
string badebababadeecd. For example, fragment de is matched two times at
the fourth and the twelfth symbol, and then SDFA activates state 14 along
an epsilon transition. The first activation reports a successful match of ba[^a]
*bad.{2}cd after processing the seventh symbol, while the second de-activates
immediately because state 14 moves to the dead-state along the next symbol e.

4 Optimization for Series DFA

Essentially SDFA trades memory size (size of states) with memory bandwidth
(size of active state set). In this section, we propose some techniques to optimize
the two metrics by improving the cutting process and matching process of SDFA.

4.1 Optimization in Cutting Process

Determining the cutting positions is the main challenge for the construction of
good SDFA. Cutting at the repetitions of any character range will have low
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memory size but high memory bandwidth as each fragment is too short. In con-
trast, cutting only at the repetitions of wildcards will have low memory band-
width but high memory bandwidth. Here we give a simple but striking way to
finish the determination quantitatively. We define the number of characters al-
lowed in a character range as its size. Then we introduce a threshold μ: if the size
of a character range is more than μ, we think the range is large enough to be cut
at the positions of its repetitions. When μ is set to 256, the SDFA is essentially a
composite DFA for the complete RegEx set because no RegEx is cut.

Furthermore, to obtain good SDFA, the cutting process should comply with
the following three rules. In fact, we can also consider these rules trying to
combine several adjacent fragments into one.

Rule 1: No constrained repetitions or unconstrained repetitions in any eldest-
son. Because repetitions of large character ranges need to duplicate states to
record all possible prefixes when multiple RegExes are compiled together as
mentioned before. Therefore the composite DFA constructed for eldestsons that
violate this rule will experience state explosion.

Rule 2: No constrained repetitions after unconstrained repetitions in each frag-
ment. Obviously eldestsons that satisfy rule 1 also follow this rule. For each non-
eldestson, if it violates this rule, it may belong to case 4 or case 5 in Table 1,
and cause exponential growth of state size in the worst case.

Rule 3: No constrained repetitions or unconstrained repetitions after range
repetitions in each fragment. All the eldestsons also follow this rule just as de-
scribed above. Any non-eldestson failing to comply with this rule falls into case
3 in Table 1, whose complexity is product.

These rules allow non-eldestsons to have more than one unconstrained rep-
etitions. One vivid example is RegEx Cookie\s+Monster\s+server\s+engine

in Snort system. It can be cut into fragments Cookie and ^s+\s+Monster\s+

server\s+engine if set μ no less than the size of \s.
The point that need to be made is that these rules are sufficient conditions but

not necessary conditions to combine adjacent fragments. An example is RegEx
ba[^a]*bad.{2}cd in Fig. 1. The fragment ^[^a]*bad.{2}cd obviously violate
Rule 2, however its DFA does not experience exponential growth in state size.
Because the occurrence of a makes ^[^a]* fails to consume bad, as a result the
DFA needn’t to take into consideration that bad may appear in the constrained
repetition .{2}. Snort and other intrusion detection systems have many RegExes
of this type, for example \/OvCgi\/[^\.]*\.exe[^\x20]{2000,}.

4.2 Optimization in Matching Process

Most DPI applications such as Snort and L7-Filter are only interested in knowing
the set of patterns to be fired by a packet. We call this type of matching as left-
most matching, which is formally defined as below.

Left-Most Matching: Consider the matching process M as a function from a
pattern P and a string S to a power set of S, such that, M(P, S) ={substring
S′ of S|S′ is the left-most substring which is accepted by the DFA of P}.
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Table 2. Primary information of experimental RegEx sets (µ = 1)

RegEx # of % of * % of {} min-length # of # of
set RegExes repetitions repetitions range NFA states 7-DFA states

l7filter 107 46.7 21.5 1–76 3325 29047
backdoor 158 36.1 1.3 2–77 3580 6164
synset 300 59 18.7 11-225 19751 > 106

This specialty can be exploited to decrease memory bandwidth. As left-most
matching is enough to know the fired RegExes, once a RegEx is reported it is
safe to set its all non-eldestson DFAs inactive forever. To our knowledge, SDFA
is the first automata that uses left-most matching to improve matching process.
Because all kinds of previous methods must go through the step of constructing
a sort of composite finite automata for the complete RegEx set. When a RegEx
is matched, they cannot guarantee that the states that have been traversed by
the RegEx will not be accessed by other RegExes. On the contrary, SDFA is able
to ensure that the fragment DFAs of one RegEx will never be accessed by other
RegExes. For the same reason, the composite DFA in SDFA needs to have an
always active instance.

5 Experimental Results

We design three representative RegEx sets, as shown in Table 2. Column 3 (4)
is the percent of RegExes containing constrained (unconstrained) repetitions of
character ranges in each set. The first RegEx set is extracted from L7-Filter [6]
system, and the second set is from backdoor rule file in Snort [9] system. The
third RegEx set is generated by open-source RegEx generator [2]. As shown in
column 7, the three RegEx sets can be compiled into 7 DFAs of 29047, 6164 and
more than 106 states respectively with multiple parallel DFAs [13].

We make experiments using two real traffic traces from different links: one
trace named download is downloaded from [12], the size is 254 MB; the other
trace named capture is captured in the interface of a backbone network, the size
is 1,538 MB. We also generate some synthetic traces of 50 MB with open-source
trace generator [2] under pm = {0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9}. Value pm is used
to model the likelihood of experiencing malicious traffic.

5.1 Evaluation of Memory Consumption

In this section, we use the size of DFA states to evaluate memory consumption
of SDFA for the three RegEx sets. Table 3 shows the summary of state size for
different values of μ. We can draw the following conclusions from Table 3.

First, DFA-based solutions are infeasible to perform matching for large RegEx
sets containing constrained repetitions and unconstrained repetitions. As men-
tioned before, SDFA is in fact a composite DFA when μ is 256. However, the
state size is more than 107 (inf) in this case for all experimental RegEx sets.
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Table 3. State size of SDFA on varying µ

value state size of composite DFA / state sums of individual DFAs / # of DFAs
of µ l7filter backdoor synset

1 5689 / 3293 / 103 2034 / 3009/144 9507 / 20322 / 321
64 6438 / 3246 / 93 45072 / 1451/58 inf / inf / 173
128 inf / 2618 / 56 45072 / 1451/58 inf / inf / 173
256 inf / 0 / 1 inf / 0 / 1 inf / 0 / 1

Second, the number of DFAs decreases as the increase of μ while the state
size of the composite DFA grows with μ. The primary reason is that high μ
makes some character ranges become small, and SDFA does not cut RegExes at
the occurrence of unconstrained repetitions and constrained repetitions of small
character ranges. As a result, the eldestsons have more symbols especially more
repetitions, which lead to the rapid increase in the state size of the composite
DFA. However, the sum of states in individual DFAs appears complexly. The
primary reason is that constrained repetitions may appear in the middle of non-
eldestsons for large μ, which results in exponential growth in state size even for
an individual DFA.

Third, SDFA can greatly reduce memory consumption. When μ is 1, the
three SDFAs have 8982, 5043 and 29379 states respectively in all, which can
be encoded in on-chip memory directly even without compression. The result is
closed to that of NFA, and better than that of multiple parallel DFAs (7-DFA).

5.2 Evaluation of Matching Performance

In this section, we evaluate matching performance of SDFA, which is measured
by the size of active state sets. We construct a SDFA for each given RegEx set
with μ = 1, and observe its active set size on real traces and synthetic traces in
average case and maximum case. In fact, both the average size and the maximum
size of active sets increase with μ. When μ = 1, SDFA has the worst average size
and maximum size, because it cuts RegExes at the occurrence of repetitions of
any character range, as a result fragments are matched frequently.

The result of backdoor set on its synthetic traces is shown in Fig. 3. As l7filter
and synset have the similar behavior, we omit them here due to page limitation.
We can find that: First, left-most matching can really improve the matching
performance of SDFA, especially in average size. Second, the average size grows
slowly with the increase of pm, while the change of maximum size is uncertain.

Fig. 4 shows the results of active set size on real traffic traces for each RegEx
set. Each connection carries an application protocol, so almost every packets can
be matched by RegExes in l7filter set. As a result, we can regard the behavior
of l7filter set as the performance of SDFA under an attack. From Fig. 4 we can
find that SDFA works well under attacks, although the maximum size is a little
big. The average active set size of SDFA is very close to that of a composite
DFA. As each RegEx set can be constructed into 7 DFAs, its average size and



344 T. Liu et al.

0 0.15 0.3 0.45 0.6 0.75 0.9
0
2
4
6
8

10
12
14
16
18
20

S
iz

e 
of

 A
ct

iv
e 

S
ta

te
 S

et

Value of pm

avg

max

opt−avg

opt−max

Fig. 3. Size of active state sets for back-
door set on its synthetic traces

l7filter synset backdoor
0

4

8

12

16

20

S
iz

e 
of

 a
ct

iv
e 

st
at

e 
se

t opt−avg+download
opt−max+download
opt−avg+capture
opt−max+capture

Fig. 4. Size of active state sets for three
experimental RegEx sets on real traces

maximum size are both 7. Obviously SDFA is suitable to perform large-scale
RegEx matching in different high-speed network environments.
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